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1. Introduction 

Over the past decade, genome-wide association studies (GWAS) have successfully uncovered many 

susceptibility loci for common diseases. However, the identified loci only explain a small portion of 

genetic risks (Jia, et al., 2011). It is challenging to uncover the remaining risky loci as their association 

signals are likely to be moderate or weak. One potential solution to this challenge is to incorporate 

other functional information, such as protein-protein interaction (PPI) or gene co-expression 

network, to investigate joint association signals beyond single markers (Jia, et al., 2012).  

We have previously developed a network-assisted approach, dmGWAS, to address this problem 

(Jia, et al., 2011). dmGWAS applies a greedy algorithm to search for dense modules in a PPI network 

that is node-weighted by GWAS signals. After its initial release, dmGWAS received much attention 

from the community and has become a popular tool for network-assisted GWAS analysis. However, 

dmGWAS ignores the edge information of the PPI network when expanding modules. 

Therefore, we introduce an upgraded algorithm, EW_dmGWAS, to boost GWAS signals in a node- 

and edge-weighted PPI network.  Differential gene co-expression (DGCE) is important genetic 

information, reflecting cellular dynamics and contributing to pathogenesis (Hou, et al., 2014). We 

thus utilize DGCE (i.e., the change of gene co-expression between case and control samples) in 

EW_dmGWAS to infer the weight of each edge and combine the association   signals of its two nodes 

to assess the overall disease risk of network modules within the human PPI network. Our previous 

dmGWAS approach is implemented as R package dmGWAS_1.0 and dmGWAS_2.X.  We thus 

continuously implement the algorithm of EW_dmGWAS as an R package named by dmGWAS_3.0. 

dmGWAS_3.0 has also been updated to cooperate with all the newest version of its depending 

packages, such as ‘igraph’, and is available at http://bioinfo.mc.vanderbilt.edu/dmGWAS. 

2. Methods  

In summary, EW_dmGWAS integrates GWAS signals and gene expression profiling to extract dense 

modules from the background PPI network. Node weights are derived from GWAS and edge weights 

are derived from gene expression profiling. The module score is a combination of node weight and 

edge weight. The aim of EW_dmGWAS is to identify modules with locally maximum scores. The 

workflow of EW_dmGWAS is described as follows. 

Step 1. Defining node weight 

http://bioinfo.uth.edu/dmGWAS
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Node weights are determined by the GWAS signals. EW_dmGWAS first map SNP p-values from GWAS 

onto gene-based p-values. Multiple tools are available for this step (Ballard, et al., 2010). We 

recommend the convenient tool VEGAS (Liu, et al., 2010). VEGAS applies the simulation from 

multivariate normal distribution to account for linkage disequilibrium. The gene-based p-values 

estimated by VEGAS are approximately uniformly distributed, and thus are appropriate to be 

transformed into standard normal distribution. We defined node weight by 𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑣) =

𝜑−1(1 − 𝑝), where 𝑝 denotes the gene-based p-value of node 𝑣, and 𝜑 is the standard normal 

distribution function.  

Step 2. Defining edge weight  

We used the change of gene co-expression between case and control samples to infer edge weight. 

Specifically, let 𝑟𝑐𝑎𝑠𝑒  and 𝑟𝑐𝑜𝑛𝑡𝑟𝑜𝑙  represent the Pearson’s correlation coefficient (PCC) of gene 

expression in both case and control samples, and 𝑛𝑐𝑎𝑠𝑒  and 𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙  represent the sample size 

respectively. We first used the Fisher transformation [Equation (1)] and then Fisher’s test of 

difference between two conditions [Equation (2)] to define a new statistic X: 

𝐹(𝑥) =
1

2
𝑙𝑛

1+𝑥

1−𝑥
 ,                                                                                 (1) 
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𝐹(𝑟𝑐𝑎𝑠𝑒)−𝐹(𝑟𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
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The newly defined statistic X approximately follows standard normal distribution (Hou, et al., 2014). 

We then defined edge weight as 𝑒𝑑𝑔𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) = 𝜑−1[2 ∗ (1 − 𝜑(|𝑋|))].  

Step 3. Defining module score 

To quantitatively evaluate the density of high-weight nodes and edges within a module, we defined 

the module score 𝑆 by 

𝑆 = 𝜆
∑ 𝑒𝑑𝑔𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)𝑒∈𝐸

√# 𝑜𝑓 𝐸 

+ (1 − 𝜆)
∑ 𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑣)𝑣∈𝑉

√# 𝑜𝑓 𝑉

,                                          (3) 

where 𝐸 and 𝑉 represent the edges and nodes in the module respectively, and 𝜆 is a parameter to 

balance GWAS and gene expression signals. 

Step 4. Module search 

We performed a greedy algorithm to search for dense modules as follows. 

(1) Assign a seed module 𝑀 and calculate the module score 𝑆𝑚 of 𝑀. At first, the seed module is a 

single gene. 

(2) Examine the first order neighbors of 𝑀, and identify the neighbor node 𝑁𝑚𝑎𝑥  that generates 

the maximum increment of module score. 

(3) Add 𝑁𝑚𝑎𝑥  to the current module 𝑀 if the score increment is greater than 𝑆𝑚 × 𝑟, where 𝑟 is a 

parameter to decide the magnitude of increment.  

(4) Repeat steps 1-3 until no more neighbors can be added. 
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Step 5. Normalization of module score 

In order to evaluate the significance of the identified modules, we used a randomization method to 

obtain the background distribution of module score. Specifically, for a module M with K nodes, we 

randomly generated a sub-network with the same size, and calculated the score 𝑆𝑚(𝜋) of this sub-

network. We repeated this process 10,000 times and denoted the mean and standard deviation of 

𝑆𝑚(𝜋) by μ and σ. The module score was normalized by 𝑆𝑛 = (𝑆𝑚 − 𝜇)/𝜎, and 𝑆𝑛 was used to 

determine the significance of the identified modules.  

3. Example 

Step 1. Reading data  

Input file 1 - a list of genes with association p-values. The p-values are gene-based p-values, which 

can be estimated from GWAS SNP-level p-values (please refer to ‘Methods’ for details). For example,  

> geneweight <- read.delim(“gene_pvalues”,as.is=T) 

> head(geneweight,4) 

     gene  weight 

1 A3GALT2 0.04042 

2 AADACL3 0.81300 

3 AADACL4 0.56300 

4   ABCA4 0.36200 

Input file 2 - A PPI network in the format of protein interaction pair. For example, 

> network <- read.delim("network.txt",as.is=T) 

> head(network, 4) 

  interactorA interactorB 

1       SEPT6     SH3KBP1 

2      ELAVL1       WAPAL 

3       HPRT1        CUL5 

4        TAF1       TAF15 

Input file 3 – two gene expression matrices for case and control samples respectively. The first 

column is gene symbol, and the other columns indicate sample ids. Please make sure the two 

matrices have the same first column (i.e., the gene symbols are in the same order). For example,  

> expr1 <- read.delim(“case_expression”,as.is=T) 

> expr2 <- read.delim(“control_expression”,as.is=T) 

> expr1[1:4,1:4] 

  Gene_symbol  sample_1 sample_2 sample_3 

1     HMGB1P1  6.377211 6.902405 6.715583 

2   LOC155060  6.699311 6.540925 7.348245 

3     HSPB1P1 10.444345 6.885489 9.393785 

4      GTPBP6  8.442804 8.888129 8.188275 
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> expr2[1:4,1:4] 

  Gene_symbol sample_1 sample_2 sample_3 

1     HMGB1P1 6.840783 6.594853 6.469367 

2   LOC155060 7.545505 7.904620 7.794645 

3     HSPB1P1 7.476676 6.954855 7.383246 

4      GTPBP6 8.608905 8.556181 8.824393 

Step 2. Dense module search  

One single function, dms, performs all the analysis necessary for dense module search. The detail of 

the algorithm can be found in our manuscript (please see the References section on our web site). Six 

input parameters are necessary for the execution of this function:  

geneweight: genes with association p-values read in step 1. 

network: pair-wise PPI data read in step 1. 

expr1 & expr2: two gene expression matrices read in step 1. 

r: the cutoff for incensement during module expanding process. The score improvement of each 

step is required as passing 𝑆𝑚+1 > 𝑆𝑚 × (1 + 𝑟) for the inclusion of any neighborhood genes, 

where 𝑆𝑚+1 is the module score by recruiting a neighborhood node. 

𝜆: 𝜆 is a parameter between 0 and 1 to balance node and edge weights. 

Box 1 explains how to choose values for r and 𝜆. The command line to execute dms is: 

> res.list <- dms(network, geneweight, expr1, expr2,  r=0.1, lambda=0.4) 

> res.list <- dms(network, geneweight, expr1, expr2,  r=0.1, lambda=”default” ) 

> res.list <- dms(network, geneweight, expr1=NULL, expr2=NULL, d=1, r=0.1) 

> res.list <- dms(network, geneweight, expr1, expr2=NULL,  r=0.1, lambda=”default” ) 

For 𝜆, we provide two options. For users who have strong prior knowledge to balance GWAS and 

gene expression signals, they can directly provide a value between 0 and 1 (the first command line). 

For those who are not very sure on how to choose 𝜆, EW_dmGWAS will estimate it automatically (the 

second command line; please see Box 1 and our manuscript for details on how to estimate 𝜆).  

dmGWAS_3.0 is compatible with the old versions, i.e., dmGWAS_1.0 and dmGWAS_2.X. Users can 

apply the third command line if they want to search for dense modules based on a background 

without edge weights. d is an integer to define the order of neighbor genes to be searched. d is always 

set up as 1 in dmGWAS_3.0, but could be 1 or 2 in dmGWAS_1.0 and dmGWAS_2.X. Please refer to 

our website at http://bioinfo.mc.vanderbilt.edu/dmGWAS/dmGWAS_old.html for details. 

In practical applications, users may sometimes do not have gene expression data for both case 

and control samples simultaneously. In dmGWAS_3.0, we provide the function to compute edge 

weights by using gene co-expression (GCE) when expression data is only available for one cohort.  

Users can use the fourth command line for this purpose. Please see Box 2 for details on how we 

estimate the edge weights when only one gene expression data set is available.  

The resultant object, res.list, contains all the results, including the node-weighted network used 

for searching, the resultant dense modules and their component genes, the module score matrix, and 

the randomization data. A resultant file *.RData will also be generated for future recalling. 

 

http://bioinfo.uth.edu/dmGWAS/dmGWAS_old.html
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> names(res.list) 

[1] "GWPI"                        "genesets.clear"              

[3] "genesets.length.null.dis"    "genesets.length.null.stat"   

[5] "module.score.matrix"         "ordered.module.score.matrix" 

#GWPI, an object of igraph class, is the node- and edge-weighted PPI network. 

#genesets.clear, a list, contains all the valid modules. The name of each record is the seed gene. 

#genesets.length.null.dis, a list, contains the randomization data of for each size of modules. 

#genesets.length.null.stat, a list, contains the statistic values of randomization data of for each size of 

modules. 

#module.score.matrix, an object of matrix, contains data for each module: gene (seed gene), Sm 

(module score), Sn (normalized module score). 

#ordered.module.score.matrix, ordered matrix of module.score.matrix based on Sn. 

Step 3. Module selection 

Modules are ranked and selected by the normalized module score 𝑆𝑛 . Theoretically, and also based 

on our application, each gene has a local module; thus, there may be thousands of modules generated 

with extensive overlap between modules because of the complex structure of the human PPI 

network. As suggested in the original study (Jia, et al., 2011), we usually chose the top modules for 

downstream analyses. This can be executed by calling function chooseModule. The parameter top in 

chooseModule could be either a percentage (<1) or an integer (≥1). Fig. 1 shows an example of sub-

network generated by function chooseModule. 

> selected <- chooseModule(res.list, top=0.01, plot=T)  

> names(selected) 

[1] "modules"    "subnetwork" 

#modules, a list, contains all the selected modules. The name of each record is the seed gene. 

#subnetwork, a sub-graph, contains all the nodes in the selected modules 

> head(selected$modules,4) 

$USP1 

 [1] "CTNND1" "SRC"    "ERBB3"  "PTPN11" "ERBB2"  "USP1"   "MUC1"    

 [8] "PTPN21" 

 

$SLC9A2 

 [1] "SRC"    "ERBB3"  "PTPN11" "ERBB2"  "JUP"    "MUC1"   "NRG1"    

 

$EGLN1 

 [1] "SRC"    "ERBB3"  "PTPN11" "ERBB2"  "JUP"    "MUC1"   "EGLN1" 

 [8] "NRG1"   "PTPN21" 

 

$ARRDC3 

 [1] "SRC"    "ERBB3"  "PTPN11" "ERBB2"  "JUP"    "MUC1"   "ADRB2" 

 [8] "GRK6"   "ARRDC3" "NRG1"   "PTPN21" 

> selected$subnetwork 

IGRAPH UNW- 129 195 --  

+ attr: name (v/c), weight (v/n), weight (e/n) 
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Box 1. How to choose r and 𝜆 

The parameter r impedes restriction on the score of the module. When r is small, it imposes loose 

restriction during the module expanding process; thus, unrelated nodes and edges with lower 

weights (higher P values) might be included. On the other hand, when r is large, strict restriction is 

imposed and only those nodes and edges with very high weights (very low P values) could be 

included. As a result, it may miss some informative nodes that have moderate association P values. In 

our implementation, 𝑟 is suggested to be 0.1, as it has been used in our previous versions of dmGWAS 

(Jia, et al., 2011). 

For 𝜆, we provide two options. For users who have strong prior knowledge to balance GWAS and 

gene expression signals, they can directly provide a value between 0 and 1. For those who are not 

very sure on how to choose 𝜆, it will be estimated automatically: EW_dmGWAS randomly extracts 

sub-networks 10,000 times from the background node- and edge-weighted PPI network, and 

compares the magnitude of edge weight part and node weight part by 

𝑚𝑟 = |
∑ 𝑒𝑑𝑔𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)𝑒∈𝐸

√# 𝑜𝑓 𝐸 

∑ 𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑣)𝑣∈𝑉

√# 𝑜𝑓 𝑉

⁄ |,                                          (4) 

where 𝑚𝑟 indicates magnitude ratio. 𝜆 is estimated as 1 (1 + 𝑚𝑒𝑑𝑖𝑎𝑛(𝑚𝑟))⁄ .  

In our application in a breast cancer data set, we compared the performance by using two user 

specified 𝜆 values (0.2 and 0.4) with the 𝜆 value estimated by EW_dmGWAS. As suggested in the 

original study (Jia, et al., 2011), we chose the candidate genes residing in the top 1% of modules for 

evaluation. Table 1 lists the numbers of candidate genes and the overlap between CGC genes 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/) and candidate genes under different 

λ. Table 2 lists the enriched KEGG pathways of candidate genes under different 𝜆 by WebGestalt 

(Zhang, et al., 2005). 

Table 1. Summary of candidate genes identified under different λ in the breast cancer data set.   

 dmGWAS EW_dmGWAS 

λ 0 0.2 0.4 0.48 (default estimate) 

# candidate genes 100  87 108  128  

# overlap with the CGC genes 4 2 3 14 

 

 

 

 

 

 

  

http://cancer.sanger.ac.uk/cancergenome/projects/census/
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Table 2. Enriched KEGG pathways of candidate genes under different λ in the breast cancer data set. 

Enriched KEGG pathway # of genes Adjusted p-value* 

dmGWAS (λ =0) 

Metabolic pathway 

 

11 

 

4.40×10-5 

EW_dmGWAS (λ =0.2) 

Metabolic pathway 

 

11 

 

1.38×10-5 

EW_dmGWAS (λ =0.4) 

No significant results   

 

- 

 

- 

EW_dmGWAS (λ =0.48, default estimate) 

Pathways in cancer 

RIG-I-like receptor signaling pathway 

Neurotrophin signaling pathway 

Tight junction 

Hepatitis C 

ErbB signaling pathway 

Endocytosis 

Adherens junction 

GnRH signaling pathway 

Leukocyte transendothelial migration 

Focal adhesion 

Jak-STAT signaling pathway 

Calcium signaling pathway 

Chemokine signaling pathway 

 

10 

6 

7 

7 

7 

6 

7 

5 

5 

5 

6 

5 

5 

3 

 

8.22×10-7 

1.11×10-6 

1.71×10-6 

2.23×10-6 

2.48×10-6 

3.78×10-6 

3.80×10-5 

4.08×10-5 

2.00×10-4 

4.00×10-4 

5.00×10-4 

1.50×10-3 

3.00×10-3 

4.50×10-3 
*P-values were adjusted by Bonferroni correction. 

 

Fig. 1. An example of subnetwork generated by function chooseModule. The color of nodes indicates 

the node weights. White color represents high weight. The width of edges indicates the edge weights. 

The more wider an edge is, the higher weight it has.   
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Box 2. Estimation of edge weights by using GCE 

In practical applications, users may sometimes do not have gene expression data for both case and 

control samples simultaneously. In our algorithm, we provide the function to estimate edge weights 

based on GCE by only using one gene expression data set. Specifically, let 𝑟 represent the Pearson’s 

correlation coefficient (PCC) of expression for a pair of genes, and 𝑛 represent the number of 

samples. We defined the new statistic as 𝑇 = 𝑟 √𝑛 − 2 √1 − 𝑟2⁄ , and 𝑇 approximately follows the 

student’s t-distribution with 𝑛 − 2 degree. We then defined edge weight as 𝑒𝑑𝑔𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) =

𝑓𝑛−2
−1[1 − 2 ∗ (1 − 𝑓𝑛−2(|X|))], where 𝑓𝑛−2 is the cumulative distribution function of t-distribution 

with 𝑛 − 2 degree.   

In our application in a schizophrenia (SCZ) data set, we compared the performance between DGCE 

and GCE (Please refer to our manuscript for the details of the SCZ data set). We had two gene 

expression profiles (one for case samples and one for control samples). Accordingly, we have the 

edge weights computed using GCE in the case samples only (referred to as GCE_case), the edge 

weights computed using GCE in the control samples only (referred to as GCE_control), and the edge 

weights computed using DGCE based on both case and control samples (referred to as DGCE). We 

applied the same greedy algorithm as provided by EW_dmGWAS using these edge weights 

respectively and obtained genes in the top 1% modules by each strategy. We used 38 SCZ core genes 

as a benchmark to evaluate the identified candidate genes (Jia, et al., 2010). Tables 3-4 summarize 

the comparison of candidate genes and enriched pathways obtained using different edge weights. 

Overall, the candidate genes obtained using DGCE contained the highest proportion of SCZ core genes 

(Table 3) (all p-values < 0.05, binomial test). In terms of pathways (Table 4), two SCZ related 

pathways are enriched in the candidate genes identified by DGCE, including ‘Endocytosis’ and 

‘Neuroactive ligand-receptor interaction’. Recent studies have shown that ‘Neuroactive ligand-

receptor interaction’ plays important roles in the antipsychotic treatment response (Adkins, et al., 

2012), while ‘Endocytosis’ has been implicated as the common pathophysiology underlying SCZ 

(Zhao, et al., 2014). Although the candidate genes identified by using GCE_case are enriched in 

several SCZ related pathways, such as ‘Neurotrophin signaling pathway’ and ‘Regulation of actin 

cytoskeleton’, a number of other pathways are also enriched, but are not readily related to SCZ. In 

contrast, when the edge weights were computed using the control samples, little information could 

be identified. Overall, the results implicated that DGCE is a more effective way to infer the edge 

weights. However, in our algorithm, we provide the function to compute edge weights based 

on GCE and allow users to explore different options in computing edge weights, especially 

when the expression data are not available for both case and control samples. 

 

Table 3. Summary of candidate genes identified by different edge weight strategies in the SCZ data 

set. 

 GCE_case  GCE_control DGCE 

# candidate genes 181 114  65  

# overlap with the 38 SCZ core genes 2 0 2 

 

 

http://en.wikipedia.org/wiki/Cumulative_distribution_function
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Table 4. Enriched KEGG pathways of candidate genes identified by different edge weight strategies in 
the SCZ data set.  

Enriched KEGG pathway # of genes Adjusted p-value* 

GCE_case 

Neurotrophin signaling pathway 

Phagosome 

Leukocyte transendothelial migration 

Jak-STAT signaling pathway 

Focal adhesion 

Tight junction 

VEGF signaling pathway 

Cell cycle 

Regulation of actin cytoskeleton 

Prostate cancer 

T cell receptor signaling pathway 

MAPK signaling pathway 

Oocyte meiosis 

Chemokine signaling pathway 

Osteoclast differentiation 

Hepatitis C 

Insulin signaling pathway 

Pathways in cancer 

Protein processing in endoplasmic reticulum 

 

8 

8 

7 

7 

7 

6 

5 

6 

7 

5 

5 

7 

5 

6 

5 

5 

5 

7 

5 

 

1.44×10-6 

3.04×10-6 

4.32×10-6 

2.25×10-5 

5.90×10-5 

5.90×10-5 

5.90×10-5 

5.90×10-5 

7.68×10-5 

7.68×10-5 

2.00×10-4 

2.00×10-4 

2.00×10-4 

3.00×10-4 

3.00×10-4 

4.00×10-4 

4.00×10-4 

6.00×10-4 

7.00×10-4 

GCE_control 

Ribosome 

 

8 

 

2.88×10-10 

DGCE 

Protein processing in endoplasmic recticulum 

Endocytosis 

Neuroactive ligand-receptor interaction 

 

7 

5 

5 

 

1.83×10-8 

2.07×10-5 

5.83×10-5 
*P-values were adjusted by Bonferroni correction.  
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